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Abstract

In many turbulent combustion models, the mean values of scalars are often calculated by integrating the product of the scalar profile and
the probability density function (PDF) over mixture fraction space. For the integration, researchers used the weighted and the un-weighted
PDF interchangeably depending on their preference. For both PBF&irection is normally presumed. However, a recent study by Liu et al.
[Internat. J. Therm. Sci. 41 (2002) 763-772] showed that the predicted mean values of scalars might be significantly different depending on
the employed PDF. This paper determines the reason for the difference and shows that the same result can be predicted by using the prop
parameters in conjunction with the un-weighted PDF.
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1. Introduction As in the work of Bilger [2], the density-weighted PDF
(Favre PDF) can be defined as:
Many advanced turbulent combustion models share the
basic assumption that the instantaneous scalar values such. pP(2)
as the species concentration, temperature and density are rel (@) = ; @)
lated to a conserved scalar such as the mixture fraction. In

these models, their average values may be obtained by in-anq can be used in the calculation of the mean values. Then,

tegration if such relations and the shape of the probability ¢ Reynolds and Favre mean values are obtained by the fol-
density function (PDF) of the mixture fraction is previously lowing ways, respectively:

known. For example, the mean values of any scalars can be

calculated by:
- _ Z) ~
b=p %P(z)dz 4)
¢= / $(2)P(2)dz @
In a similar way, the density weighted Favre mean values are® = f $(2)P(2)dz (5)
obtained by:
é= l / pd(2)P(z)dz ) The PDFs,P(z) and P(z), have been used interchangeably
o in previous studies depending on the preference of the re-

searchers. Whether the density-weighted PDF is used [4-7]
* Corresponding author. Tel.: +1-416-978-1827, fax: +1-416-978-7753. Of the un-weighted PDF is used [8-10], the shape of the PDF
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Nomenclature
P(z)  un-weighted probability density function of mix- 8 B-PDF parameters
_ ture fraction r gamma function
P(z)  density-weighted probability density function of scalar variable
. rlluxture fract|0|_'1 ture fracti k turbulent kinetic energy
‘L avre mean mixture fraction £ dissipation rate of turbulent kinetic energy
" Favre mean mixture fraction variance 0 density
z Reynolds mean mixture fraction _
72 Reynolds mean mixture fraction variance Subscript
o B-PDF parameters R corrected for Reynolds averaging input
5 -t 2. Mathematical modeling
P(z)=P()=—
Jo 22 tA—2)F"1dz o _
_ T+ B) 11— 1 ©) 2.1. Thedensity weighted PDF and un-weighted PDF
F(e)I'(B)

The PDF function may be either presumed or solved from
a balance equation [3]. However, for engineering applica-
tions, a PDF function is normally presumed to be the

The parameters of the-PDF are related to the Favre mean
mixture fraction and its variance by:

o= z<(1_ )z 1) @) function. Even though alternative forms of presumed PDF
2 for the mixture fraction such as the clipped Gaussian and
(1-73)3 double delta function have been used in the pastgtidF
B=(1- )( 1) (8) function is a widely chosen because it is well defined on the
Z”Z interval (0, 1) and its shape ranges from a delta function to
The PDF is defined for the region wheré:— 2)2/z72 —1> a Gaussian function [4]. When thgfunction is presumed

0. The Favre mean mixture fraction and its variance are cal- as the PDF, the density-weighted PDF function is defined as
culated from the computational fluid dynamics code. When shown in (6).

it is considered that the PDF is approximated, not the exact  The two non-negative parametessand 8 can be deter-
form, it seems reasonable that #d°DF is used for the den- ~ Mined from the relations to the mean mixture fraction and
sity weighted PDF as well as the un-weighted PDF as long its variance by the following equations:

as the final mean values are reasonably predicted. 1

However, a recent study by Liu et al. [1] showed that . :/ Blo)de = I'(a+DI'(B) ©)
the mean density can be significantly different dependlng Fa+B8+1
on whether the Favre PDF (density weighted) or the un- 0
weighted PDF is used. The current authors confirm this dif- 1
ference for the mean temperature as well as the mean density 2 _ /(z 2P () dz = F@+2rB) 22 (10)
through this study. The mean temperature and density f|eld Fla+B+2)

have a significant effect on the flow field. Despite the dis-
crepancy in the results from the two methods, a systematicBY inserting the relation]"(x + 1) = xI'(x) into (9) and
study has not yet been done to explore the differences be-(10), the two parameters,andp can be related to the Favre
tween the two methods and their predictions to assess whichmean mixture fraction and its variance as in (7) and (8). The
method is correct. This paper is motivated by this necessity. Favre mean mixture fraction and its variance are calculated
From the derivation of thg-PDF parameters, it will be by solving two additional balance equations in the flow field

shown that the un-weighted PDF parameters should be basedising the CFD code,
on the Reynolds mean mixture fraction and its variance ;- 3 5 3

. . 0p - z
rather than the Favre means. Since only the Favre mean mlx-? + — ox (pu;z) = Ix |:< >8x } (11)
ture fraction and its variance are normally available from the J J J
combustion fluid dynamics (CFD) simulation, the Reynolds —~
mean mixture fraction and its variance need to be determinedd pz”z
from the Favre means and used to define new parameters §; a
for the un-weighted PDF. Finally, a comparison of the mean ~ L2 .
temperature fields using the above two probability density  _— [( )az ] +C 1m<£) =€ 2
functions as well as the newly defined un-weighted proba- 0x;j ¢ ax; k
bility density function is performed. (12)

(i)
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1.2
where model constants are given @s= 0.7, o, = 0.7, ' ' '

Ce1=2.0,C4=20.

Once the two parameters for the PDF is determined from
the Favre mean mixture fraction and its variance, the Favre
or Reynolds mean values of any scalars can be obtained byZ
Eq. (4) and Eq. (5), respectively.

In a similar way, the un-weighted PDF has been equiva-
lently used in calculating those mean values by researchers.&
The un-weighted PDF is also assumegasinction and has
the same form as Eq. (6). However, when the un-weighted
PDF is used, it is clear that the following relations should

be satisfied from the definitions for the Reynolds mean mix- . .
ture: 0 0.25 0.5 0.75 1
Mixture Fraction (z)

m

0.6

ensity (kg/

1

_ I'oe+2DI Fig. 1. The density profile used for PDF integration.
Z=/ZP(Z)C|Z=M (13)
Fla+p+1 )
0 2.2. The comparison of the Favre means and Reynolds
means
and for the variance of the Reynolds mean mixture frac-
tion: From the Favre mean mixture fraction and its variance,

the Reynolds mean mixture fraction can be calculated from

_ M@ +2)T(8) (4) in the same way as any other scalars:
2 — —7)2 _ TP -2
z —/(Z 2)P(z)dz ] (14) o 1z~
0 z:p/;P(z)dz (17)

The parameters for the un-weighted PDF are related to

. : . : . The Reynolds mean mixture fraction variance is obtained by:
the Reynolds mean mixture fraction and its variance instead

of those of Favre averaging in the same form as (7), (8): _ ! (z—7)2 ~
z/zzﬁ/ 5 P(2)dz
(-2 o ¢
AR =1 — -1 (15)
Z/2 1 2 1 .
= ﬁf Z—P(z) dz —2pz7 | —P(z)dz + z2
(1—73)z p(2) p(z)
ﬂR=(1—z>< — —1) (16) ° °
Z/ 2
=5 L P(z)dz — 72 (18)
where the subscripR, indicates Reynolds averaged inputs. 5 p(2)

This can result in an inconsistency since the Favre mean
mixture fraction and its variance are conventionally used to
define the parameters even in the un-weighted PDF as in

Eq. (v) and Eq. (8). In flow field calculations with large 3460 Since the Favre mean mixture fraction and variance
density changes such as in combusting flows, the Favre-gre ayailable for any location in the domain from the CFD

averaged governing equations are solved in order to avoidg|cylation, the Reynolds mean mixture fraction and its vari-
the density correlation terms that appear in the Reynolds gnce can be calculated using Eq. (17) and (18), together with
averaged equations. Therefore, only the Favre mean mix-3 density profilep(z). The density profile used for the cur-
ture fraction and its variance are normally available from the rent calculation is obtained from the Burke—Schuman flame.
CFD simulation. There is thus motivation to use the Favre However, the profiles from other conditions can be used
averaged values in determining the PDF parameters. How-without loss of generality. In Fig. 1, the employed density
ever, since the Favre mean mixture fraction and variance areprofile is presented.

not expected to be the same as the Reynolds mean mixture Fig. 2 presents the Reynolds mean mixture fraction as a
fraction and variance, this may cause significant errors in the function of the Favre mean mixture fraction and variance.
prediction. It is then of interest to compare the Favre mean For convenience, the non-dimensionalized variance is in-
mixture fraction and its variance with those obtained from troduced instead of the mixture fraction variance. It is nor-
Reynolds averaging. malized by dividing;”? by 7(1— 7) and has a value between

Note that the density weighted PDF is used in the above (17)
and (18), requiring only the Favre mean mixture fraction
and its variance, which are available from the CFD calcu-
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Fig. 2. The comparison of the Reynolds and Favre mean mixture fraction. Fig. 4. The Reynolds mean mixture fraction variance for the Favre mean
mixture fraction and the non-dimensionalized variance.
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Fig. 3. The Favre mean mixture fraction variance for the Favre mean mix-
ture fraction and the non-dimensionalized variance. Fig. 5. The Reynolds mean density for the various Favre mean mixture frac-
tion and the non-dimensionalized variance.

Oand 1:
~ species mass fraction can then be calculated by Eq. (1) us-
_ 7 (19) ing the un-weighted PDF parameters, as defined in Eq. (15)
"TI1-3) and Eq. (16).

From Fig. 2, it is clear that the Reynolds mean mixture ~ The PDFs are ultimately used to calculate expected val-
fraction is different from the Favre mean mixture fraction. ues of various scalar variables. It is thus of interest to see if
Depending on the non-dimensionalized variance, the differ- the use of different PDFs results in significant differences in
ence may be more than 10% since the Reynolds mixturethe these quantities. The Reynolds mean density is a mean-
fraction is skewed by the weighted density profile. ingful variable to examine since it affects both the flow field

The Reynolds and Favre mean mixture fraction variances and the energy equation, and this calculation is repeated fre-
are presented in Fig. 3 and Fig. 4, respectively. The Reynoldsquently during the CFD calculation.
mean mixture fraction variances are skewed relative to the  In Fig. 5, the mean density using the density-weighted
Favre mean mixture fraction variances. PDF is presented as a function of the Favre mean mixture

If the un-weighted PDF is to be used in a consistent fraction and the normalized variance. The Burke—Schuman
manner, the Favre mean mixture fraction and variance ob-density profile is used in the calculation. The Favre mean
tained from the CFD calculation must be converted to the mixture fraction is divided by 100 points from 0 to 1 and
Reynolds averaged values using Eq. (17) and Eq. (18). Thethe normalized variance is divided by 11 points from 0.01
Reynolds average values of scalars such as density ando 0.99.
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g 1'4
In the same way, the Reynolds mean densities are calcu- ' ' ' '

lated and presented using three different PDFs as follows:

Method I: The un-weighted PDF
The Favre averaged mean and variance of the mix-
ture fraction obtained from the CFD calculation are

used to define the un-weighted PDINz; 7, /%),
and expected value @f is calculated:

¢'>=/¢<z)P(z;z, 2 dz

Method I1:  The un-weighted PDF (corrected)
The Reynolds averaged values forand z/2 are

Mean Density

first calculated from knowledge afandz”2. The % o3 o o 0% 1
Reynolds averaged values are then used to calculate Favre Mean Mixture Fraction

the un-weighted PDFP(z; Z, /%), and¢ is calcu- @

lated from:

4_5=/¢(Z)P(z;2,zﬁ)dz
Method I11:  The density-weighted PDF
- ¢(Z) "‘( ~

p=0 TP 22,2 dz

The mean densities are calculated using Methods |, II,
and lll, respectively and are shown in Fig. 6(a), Fig. 6(b),
and Fig. 6(c). The figures show that similar densities are
obtained when Method Il and Method Il are applied. In con-
trast, Method I, which used Favre-averaged values to define
the PDF and then calculated a Reynolds averaged density
without correcting the PDF, predicted quite different values

Mean Density

for the density. This is further illustrated in Fig. 7 which 0 ! I ! L
. . . . . 0 0.2 0.4 0.6 0.8 1
shows the density as a function of the non-dimensionalized . .
f - - Favre Mean Mixture Fraction
variance for the stoichiometrig )

This result shows that the possible reason for the sig-
nificant difference between the un-weighted PDF and the
density weighted PDF is caused by using the inappropriate
parameters, that is, the Favre mean mixture fraction and its
variance in conjunction with an un-weighted PDF. There-
fore, care must be taken to ensure consistency in the calcu-
lation of Reynolds values.

3. Numerical simulation

Mean Density

To examine the impact of the PDF integration methods on
the predicted flame temperatures, a numerical simulation has
been carried out for a turbulent diffusion methane jet flame.
Three simulations were performed using the three different
integration methods. All other aspects of the simulations are | . | .
identical. 00 0.2 0.4 0.6 0.8 1

Favre Mean Mixture Fraction

3.1. Code development (©

. . . . . Fig. 6. The mean density for the Favre mean mixture fraction at different
Solutions were obtained using an in-house two-dimen- normalized variances. (a) The mean density from Method I; (b) The mean

sional CFD code. The Favre averaged governing equationsdensity from Method II; (c) The mean density from Method Il
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are discretized by the finite volume based approach. Thethe various mean mixture fraction and its variance and stored
colocated grid scheme is employed and a multigrid solver in a library.

is used to solve the algebraic equations. The pressure field is

corrected using the SIMPLEC algorithm. Thes model is 3.2, Governing equations

implemented for the turbulence. In order to calculatnd . . o
~ The conservation equations for turbulent kinetic energy,

7”2 [11], two additional scalar transport equations are solved k, and dissipation rate, are given below [11]:

simultaneously with the flow field calculation and used in
determining the PDF shape. To reduce the computational% + i(ﬁgjk) - %[(M + &) ﬁ} + Py — pe

load, the PDF integration has been performed in advance for 9¢ ax; Xj ok ) 0x;
(20)
12 . l T . 9ps | 9 om0 M) 92
ot + 0x; (puje) = 0x; i os ) 0x;
1F- -1 & _82
+ Cslzpk - Cszp? (21)
08| - The source tern®; in Eq. (20) and Eq. (21) is given by:
>
= oll; 8ﬂj ol
E P, = 22
2 o6 = : M[[axj 8xi:|8x]~ (22)
g The model constants are set to the commonly used values
04l - of C,, =0.09,0, =1.0,0, =1.3,04, = 1.0,C,1 = 1.44, and
- C.2 = 1.92. The equations for the mean mixture fraction and
& —®— Method I its variance are given by Eg. (11) and Eq. (12).
02 — —A— - Method II T
— = Method IIT
© 3.3. Thetest case
00 Of2 0?4 0%6 0?8 1

The test case considered is a methane jet in a coflow of
air. The methane jet velocity is set to 52gm* and the sur-
Fig. 7. The mean density for the stoichiometric mean mixture fraction.  rounding air flow velocity is set to 2 s L. The turbulent

Non-Dimensionalized Mixture Fraction Variance

1800————]
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(b)
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— 1100.
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(©

Fig. 8. The mean temperature contour for the turbulent jet flame (computation domain: 120 mm (keBgth)m (height)). (a) The mean temperature contour
from Method I; (b) The mean temperature contour from Method II; (c) The mean temperature contour from Method Il1.
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Fig. 9. The radial profile of mean temperature for the turbulent jet methane
flame. (a) The radial temperature profile Yat= 0.055 m; (b) The radial
temperature profile at = 0.116 m.

intensity at the jet inlet is set to 10%. Pure methane is in-
jected from the fuel nozzle with a diameter of 5.2 mm and
mixed with the surrounding low speed air. The mean mixture
fraction isz = 1 at the fuel inlet an@ = O at the air inlet.

4. Resultsand discussion

Fig. 8(a), Fig. 8(b) and Fig. 8(c) show the predicted tem-
perature contours using the three PDF integration methods
All contours are plotted using the same scale. When the
un-weighted PDF is used (Fig. 8(a)), the contours are dif-
ferent from those obtained using the density weighted PDF
(Fig. 8(c)). However, when the un-weighted PDF with newly

defined parameters is used (Fig. 8(b)), excellent agreement

with the results of the density weighted PDF is obtained.
Radial temperature profiles are compared in Fig. 9(a) and

Fig. 9(b) at different axial positions. It is clearly seen that the

un-weighted PDF with the corrected parameters is in excel-

(2)
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lent agreement with the density-weighted PDF. In contrast,
the use of Favre mean mixture fraction and its variance with
an un-weighted PDF results in underprediction of the tem-
perature profile in the outer section of the flame. The slight
differences between Methods Il and Il arise from the numer-
ical integration performed to calculate the expected values.

This trend is consistent with the previous density com-
parison where the conventional un-weighted PDF shows a
higher density for the same mixture fraction. It also agrees
with the density comparison of Liu et al. [1].

5. Conclusion

The study has been concerned with examining the impact
of the presumed PDF on the expected values of scalars such
as density and temperature in combusting flows. The moti-
vation for the work arose from the apparent inconsistency
in using the Favre mean mixture fraction and its variance
together with an un-weighted PDF in the determination of
the expected values of scalars. A systematic comparison be-
tween the density-weighted PDF and the un-weighted PDF
has been carried out in the study. For mathematical consis-
tency, it is suggested that the parameters for the un-weighted
PDF should be related to the Reynolds mean mixture frac-
tion and its variance. For the various combinations of the
Favre mean mixture fraction and its variance, the Reynolds
mean mixture fraction and its variance are calculated and
compared. The differences between the Reynolds and Favre
mixture fraction affects the parametessand g which are
used to determine the un-weighted PDF shape. The mean
temperature from the conventional un-weighted PDF and
density-weighted PDF are compared with the un-weighted
PDF with the corrected parameters. For comparison, a nu-
merical simulation for the methane diffusion jet flame has
been carried out. This study leads to the following conclu-
sions:

(1) The predicted mean values using the conventional un-
weighted PDF shows significant difference from the re-
sult of the density-weighted PDF, which confirms the
result of Liu et al. [1].

This difference is caused by using the inappropriate pa-
rameters for the un-weighted PDF. The proper parame-
ters for the un-weighted PDF should be related to the
Reynolds mean mixture fraction and its variance. There-
fore, when the un-weighted PDF is used, newly defined
parameters should be used.

Once the proper parameters are used for the un-weighted
PDF, it shows excellent agreement with the results of the
density-weighted PDF.

®3)
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