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Abstract

In many turbulent combustion models, the mean values of scalars are often calculated by integrating the product of the scalar
the probability density function (PDF) over mixture fraction space. For the integration, researchers used the weighted and the un
PDF interchangeably depending on their preference. For both PDFs, aβ-function is normally presumed. However, a recent study by Liu e
[Internat. J. Therm. Sci. 41 (2002) 763–772] showed that the predicted mean values of scalars might be significantly different dep
the employed PDF. This paper determines the reason for the difference and shows that the same result can be predicted by usin
parameters in conjunction with the un-weighted PDF.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Many advanced turbulent combustion models share
basic assumption that the instantaneous scalar values
as the species concentration, temperature and density a
lated to a conserved scalar such as the mixture fraction
these models, their average values may be obtained b
tegration if such relations and the shape of the probab
density function (PDF) of the mixture fraction is previous
known. For example, the mean values of any scalars ca
calculated by:

φ̄ =
∫

φ(z)P (z)dz (1)

In a similar way, the density weighted Favre mean values
obtained by:

φ̃ = 1

ρ̄

∫
ρφ(z)P (z)dz (2)
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As in the work of Bilger [2], the density-weighted PD
(Favre PDF) can be defined as:

P̃ (z) = ρP (z)

ρ̄
(3)

and can be used in the calculation of the mean values. T
the Reynolds and Favre mean values are obtained by th
lowing ways, respectively:

φ̄ = ρ̄

∫
φ(z)

ρ
P̃ (z)dz (4)

φ̃ =
∫

φ(z)P̃ (z)dz (5)

The PDFs,P(z) andP̃ (z), have been used interchangea
in previous studies depending on the preference of the
searchers. Whether the density-weighted PDF is used [
or the un-weighted PDF is used [8–10], the shape of the P

is normally presumed to be given by theβ-function:
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Nomenclature

P(z) un-weighted probability density function of mix-
ture fraction

P̃ (z) density-weighted probability density function of
mixture fraction

z̃ Favre mean mixture fraction

z̃′′2 Favre mean mixture fraction variance
z̄ Reynolds mean mixture fraction

z′2 Reynolds mean mixture fraction variance
α β-PDF parameters

β β-PDF parameters
� gamma function
φ scalar variable
k turbulent kinetic energy
ε dissipation rate of turbulent kinetic energy
ρ density

Subscript

R corrected for Reynolds averaging input
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P(z) = P̃ (z) = zα−1(1− z)β−1∫ 1
0 zα−1(1− z)β−1 dz

= �(α + β)

�(α)�(β)
zα−1(1− z)β−1 (6)

The parameters of theβ-PDF are related to the Favre me
mixture fraction and its variance by:

α = z̃

(
(1− z̃)z̃

z̃′′2
− 1

)
(7)

β = (1− z̃)

(
(1− z̃)z̃

z̃′′2
− 1

)
(8)

The PDF is defined for the region where:(1− z̃)z̃/z̃′′2 −1�
0. The Favre mean mixture fraction and its variance are
culated from the computational fluid dynamics code. Wh
it is considered that the PDF is approximated, not the e
form, it seems reasonable that theβ-PDF is used for the den
sity weighted PDF as well as the un-weighted PDF as l
as the final mean values are reasonably predicted.

However, a recent study by Liu et al. [1] showed th
the mean density can be significantly different depend
on whether the Favre PDF (density weighted) or the
weighted PDF is used. The current authors confirm this
ference for the mean temperature as well as the mean de
through this study. The mean temperature and density
have a significant effect on the flow field. Despite the d
crepancy in the results from the two methods, a system
study has not yet been done to explore the differences
tween the two methods and their predictions to assess w
method is correct. This paper is motivated by this neces

From the derivation of theβ-PDF parameters, it will be
shown that the un-weighted PDF parameters should be b
on the Reynolds mean mixture fraction and its varia
rather than the Favre means. Since only the Favre mean
ture fraction and its variance are normally available from
combustion fluid dynamics (CFD) simulation, the Reyno
mean mixture fraction and its variance need to be determ
from the Favre means and used to define new param
for the un-weighted PDF. Finally, a comparison of the m
temperature fields using the above two probability den
functions as well as the newly defined un-weighted pro

bility density function is performed.
y

d

-

s

2. Mathematical modeling

2.1. The density weighted PDF and un-weighted PDF

The PDF function may be either presumed or solved fr
a balance equation [3]. However, for engineering appl
tions, a PDF function is normally presumed to be theβ

function. Even though alternative forms of presumed P
for the mixture fraction such as the clipped Gaussian
double delta function have been used in the past, theβ-PDF
function is a widely chosen because it is well defined on
interval (0,1) and its shape ranges from a delta function
a Gaussian function [4]. When theβ-function is presumed
as the PDF, the density-weighted PDF function is define
shown in (6).

The two non-negative parameters,α andβ can be deter
mined from the relations to the mean mixture fraction a
its variance by the following equations:

z̃ =
1∫

0

zP̃ (z)dz = �(α + 1)�(β)

�(α + β + 1)
(9)

z̃′′2 =
1∫

0

(z − z̃)2P̃ (z)dz = �(α + 2)�(β)

�(α + β + 2)
− z̃2 (10)

By inserting the relation,�(x + 1) = x�(x) into (9) and
(10), the two parameters,α andβ can be related to the Fav
mean mixture fraction and its variance as in (7) and (8).
Favre mean mixture fraction and its variance are calcul
by solving two additional balance equations in the flow fi
using the CFD code,

∂ρ̄z̃

∂t
+ ∂

∂xj

(ρ̄ũj z̃) = ∂

∂xj

[(
µt

σz

)
∂z̃

∂xj

]
(11)

∂ρ̄z̃′′2

∂t
+ ∂

∂xj

(
ρ̄ũj z̃′′2)

= ∂

∂xj

[(
µt

σg

)
∂z̃′′2

∂xj

]
+ Cg1µt

(
∂z̃

∂xj

)2

− Cg2ρ̄
ε

k
z̃′′2
(12)
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where model constants are given asσz = 0.7, σg = 0.7,
Cg1 = 2.0, Cg2 = 2.0.

Once the two parameters for the PDF is determined f
the Favre mean mixture fraction and its variance, the F
or Reynolds mean values of any scalars can be obtaine
Eq. (4) and Eq. (5), respectively.

In a similar way, the un-weighted PDF has been equ
lently used in calculating those mean values by researc
The un-weighted PDF is also assumed asβ-function and has
the same form as Eq. (6). However, when the un-weigh
PDF is used, it is clear that the following relations sho
be satisfied from the definitions for the Reynolds mean m
ture:

z̄ =
1∫

0

zP (z)dz = �(α + 1)�(β)

�(α + β + 1)
(13)

and for the variance of the Reynolds mean mixture fr
tion:

z′2 =
1∫

0

(z − z̄)2P(z)dz = �(α + 2)�(β)

�(α + β + 2)
− z̄2 (14)

The parameters for the un-weighted PDF are relate
the Reynolds mean mixture fraction and its variance ins
of those of Favre averaging in the same form as (7), (8):

αR = z̄

(
(1− z̄)z̄

z′2
− 1

)
(15)

βR = (1− z̄)

(
(1− z̄)z̄

z′2
− 1

)
(16)

where the subscript,R, indicates Reynolds averaged inpu
This can result in an inconsistency since the Favre m
mixture fraction and its variance are conventionally use
define the parameters even in the un-weighted PDF a
Eq. (7) and Eq. (8). In flow field calculations with larg
density changes such as in combusting flows, the Fa
averaged governing equations are solved in order to a
the density correlation terms that appear in the Reyn
averaged equations. Therefore, only the Favre mean
ture fraction and its variance are normally available from
CFD simulation. There is thus motivation to use the Fa
averaged values in determining the PDF parameters. H
ever, since the Favre mean mixture fraction and variance
not expected to be the same as the Reynolds mean mi
fraction and variance, this may cause significant errors in
prediction. It is then of interest to compare the Favre m
mixture fraction and its variance with those obtained fr

Reynolds averaging.
.

Fig. 1. The density profile used for PDF integration.

2.2. The comparison of the Favre means and Reynolds
means

From the Favre mean mixture fraction and its varian
the Reynolds mean mixture fraction can be calculated f
(4) in the same way as any other scalars:

z̄ = ρ̄

1∫
0

z

ρ
P̃ (z)dz (17)

The Reynolds mean mixture fraction variance is obtained

z′2 = ρ̄

1∫
0

(z − z̄)2

ρ(z)
P̃ (z)dz

= ρ̄

1∫
0

z2

ρ(z)
P̃ (z)dz − 2ρ̄z̄

1∫
0

z

ρ(z)
P̃ (z)dz + z̄2

= ρ̄

1∫
0

z2

ρ(z)
P̃ (z)dz − z̄2 (18)

Note that the density weighted PDF is used in the above
and (18), requiring only the Favre mean mixture fract
and its variance, which are available from the CFD cal
lation. Since the Favre mean mixture fraction and varia
are available for any location in the domain from the C
calculation, the Reynolds mean mixture fraction and its v
ance can be calculated using Eq. (17) and (18), together
a density profile,ρ(z). The density profile used for the cu
rent calculation is obtained from the Burke–Schuman fla
However, the profiles from other conditions can be u
without loss of generality. In Fig. 1, the employed dens
profile is presented.

Fig. 2 presents the Reynolds mean mixture fraction
function of the Favre mean mixture fraction and varian
For convenience, the non-dimensionalized variance is
troduced instead of the mixture fraction variance. It is n

malized by dividingz̃′′2 by z̃(1− z̃) and has a value between
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Fig. 2. The comparison of the Reynolds and Favre mean mixture frac

Fig. 3. The Favre mean mixture fraction variance for the Favre mean
ture fraction and the non-dimensionalized variance.

0 and 1:

Vn = z̃′′2

z̃(1− z̃)
(19)

From Fig. 2, it is clear that the Reynolds mean mixt
fraction is different from the Favre mean mixture fractio
Depending on the non-dimensionalized variance, the di
ence may be more than 10% since the Reynolds mix
fraction is skewed by the weighted density profile.

The Reynolds and Favre mean mixture fraction varian
are presented in Fig. 3 and Fig. 4, respectively. The Reyn
mean mixture fraction variances are skewed relative to
Favre mean mixture fraction variances.

If the un-weighted PDF is to be used in a consist
manner, the Favre mean mixture fraction and variance
tained from the CFD calculation must be converted to
Reynolds averaged values using Eq. (17) and Eq. (18).

Reynolds average values of scalars such as density and
Fig. 4. The Reynolds mean mixture fraction variance for the Favre m
mixture fraction and the non-dimensionalized variance.

Fig. 5. The Reynolds mean density for the various Favre mean mixture
tion and the non-dimensionalized variance.

species mass fraction can then be calculated by Eq. (1
ing the un-weighted PDF parameters, as defined in Eq.
and Eq. (16).

The PDFs are ultimately used to calculate expected
ues of various scalar variables. It is thus of interest to se
the use of different PDFs results in significant difference
the these quantities. The Reynolds mean density is a m
ingful variable to examine since it affects both the flow fie
and the energy equation, and this calculation is repeated
quently during the CFD calculation.

In Fig. 5, the mean density using the density-weigh
PDF is presented as a function of the Favre mean mix
fraction and the normalized variance. The Burke–Schum
density profile is used in the calculation. The Favre m
mixture fraction is divided by 100 points from 0 to 1 a
the normalized variance is divided by 11 points from 0

to 0.99.
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In the same way, the Reynolds mean densities are ca
lated and presented using three different PDFs as follow

Method I: The un-weighted PDF
The Favre averaged mean and variance of the m
ture fraction obtained from the CFD calculation a

used to define the un-weighted PDF,P(z; z̃, z̃′′2),
and expected value ofφ is calculated:

φ̄ =
∫

φ(z)P
(
z; z̃, z̃′′2)dz

Method II: The un-weighted PDF (corrected)

The Reynolds averaged values forz̄ and z′2 are

first calculated from knowledge of̃z and z̃′′2. The
Reynolds averaged values are then used to calc

the un-weighted PDF,P(z; z̄, z′2), andφ̄ is calcu-
lated from:

φ̄ =
∫

φ(z)P
(
z; z̄, z′2)dz

Method III: The density-weighted PDF

φ̄ = ρ̄

∫
φ(z)

ρ
P̃

(
z; z̃, z̃′′2)dz

The mean densities are calculated using Methods I
and III, respectively and are shown in Fig. 6(a), Fig. 6(
and Fig. 6(c). The figures show that similar densities
obtained when Method II and Method III are applied. In co
trast, Method I, which used Favre-averaged values to de
the PDF and then calculated a Reynolds averaged de
without correcting the PDF, predicted quite different valu
for the density. This is further illustrated in Fig. 7 whic
shows the density as a function of the non-dimensional
variance for the stoichiometric̃z.

This result shows that the possible reason for the
nificant difference between the un-weighted PDF and
density weighted PDF is caused by using the inapprop
parameters, that is, the Favre mean mixture fraction an
variance in conjunction with an un-weighted PDF. The
fore, care must be taken to ensure consistency in the c
lation of Reynolds values.

3. Numerical simulation

To examine the impact of the PDF integration methods
the predicted flame temperatures, a numerical simulation
been carried out for a turbulent diffusion methane jet fla
Three simulations were performed using the three diffe
integration methods. All other aspects of the simulations
identical.

3.1. Code development

Solutions were obtained using an in-house two-dim

sional CFD code. The Favre averaged governing equations
-

-

(a)

(b)

(c)

Fig. 6. The mean density for the Favre mean mixture fraction at different
normalized variances. (a) The mean density from Method I; (b) The mean

density from Method II; (c) The mean density from Method III.
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are discretized by the finite volume based approach.
colocated grid scheme is employed and a multigrid so
is used to solve the algebraic equations. The pressure fie
corrected using the SIMPLEC algorithm. Thek–ε model is
implemented for the turbulence. In order to calculatez̃ and

z̃′′2 [11], two additional scalar transport equations are sol
simultaneously with the flow field calculation and used
determining the PDF shape. To reduce the computati
load, the PDF integration has been performed in advanc
Fig. 7. The mean density for the stoichiometric mean mixture fraction.

from Method I; (b) The mean temperature contour from Method II; (c) The m
the various mean mixture fraction and its variance and st
in a library.

3.2. Governing equations

The conservation equations for turbulent kinetic ene
k, and dissipation rate,ε, are given below [11]:

∂ρ̄k

∂t
+ ∂

∂xj

(ρ̄ũj k) = ∂

∂xj

[(
µ + µt

σk

)
∂k

∂xj

]
+ Pk − ρ̄ε

(20)

∂ρ̄ε

∂t
+ ∂

∂xj

(ρ̄ũj ε) = ∂

∂xj

[(
µ + µt

σε

)
∂ε

∂xj

]

+ Cε1
ε

k
Pk − Cε2ρ̄

ε2

k
(21)

The source termPk in Eq. (20) and Eq. (21) is given by:

Pk = µt

[
∂ũi

∂xj

+ ∂ũj

∂xi

]
∂ũi

∂xj

(22)

The model constants are set to the commonly used va
of Cµ = 0.09,σk = 1.0, σε = 1.3, σk = 1.0, Cε1 = 1.44, and
Cε2 = 1.92. The equations for the mean mixture fraction a
its variance are given by Eq. (11) and Eq. (12).

3.3. The test case

The test case considered is a methane jet in a coflo
air. The methane jet velocity is set to 52 m·s−1 and the sur-

rounding air flow velocity is set to 2 m·s−1. The turbulent

our
(a)

(b)

(c)

Fig. 8. The mean temperature contour for the turbulent jet flame (computation domain: 120 mm (length)× 30 mm (height)). (a) The mean temperature cont

ean temperature contour from Method III.
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(b)

Fig. 9. The radial profile of mean temperature for the turbulent jet meth
flame. (a) The radial temperature profile atX = 0.055 m; (b) The radial
temperature profile atX = 0.116 m.

intensity at the jet inlet is set to 10%. Pure methane is
jected from the fuel nozzle with a diameter of 5.2 mm a
mixed with the surrounding low speed air. The mean mixt
fraction isz̃ = 1 at the fuel inlet and̃z = 0 at the air inlet.

4. Results and discussion

Fig. 8(a), Fig. 8(b) and Fig. 8(c) show the predicted te
perature contours using the three PDF integration meth
All contours are plotted using the same scale. When
un-weighted PDF is used (Fig. 8(a)), the contours are
ferent from those obtained using the density weighted P
(Fig. 8(c)). However, when the un-weighted PDF with new
defined parameters is used (Fig. 8(b)), excellent agree
with the results of the density weighted PDF is obtained.

Radial temperature profiles are compared in Fig. 9(a)
Fig. 9(b) at different axial positions. It is clearly seen that

un-weighted PDF with the corrected parameters is in excel-
.

t

lent agreement with the density-weighted PDF. In contr
the use of Favre mean mixture fraction and its variance w
an un-weighted PDF results in underprediction of the te
perature profile in the outer section of the flame. The sl
differences between Methods II and III arise from the num
ical integration performed to calculate the expected valu

This trend is consistent with the previous density co
parison where the conventional un-weighted PDF show
higher density for the same mixture fraction. It also agr
with the density comparison of Liu et al. [1].

5. Conclusion

The study has been concerned with examining the im
of the presumed PDF on the expected values of scalars
as density and temperature in combusting flows. The m
vation for the work arose from the apparent inconsiste
in using the Favre mean mixture fraction and its varia
together with an un-weighted PDF in the determination
the expected values of scalars. A systematic compariso
tween the density-weighted PDF and the un-weighted P
has been carried out in the study. For mathematical con
tency, it is suggested that the parameters for the un-weig
PDF should be related to the Reynolds mean mixture f
tion and its variance. For the various combinations of
Favre mean mixture fraction and its variance, the Reyn
mean mixture fraction and its variance are calculated
compared. The differences between the Reynolds and F
mixture fraction affects the parameters,α andβ which are
used to determine the un-weighted PDF shape. The m
temperature from the conventional un-weighted PDF
density-weighted PDF are compared with the un-weigh
PDF with the corrected parameters. For comparison, a
merical simulation for the methane diffusion jet flame h
been carried out. This study leads to the following conc
sions:

(1) The predicted mean values using the conventional
weighted PDF shows significant difference from the
sult of the density-weighted PDF, which confirms t
result of Liu et al. [1].

(2) This difference is caused by using the inappropriate
rameters for the un-weighted PDF. The proper para
ters for the un-weighted PDF should be related to
Reynolds mean mixture fraction and its variance. The
fore, when the un-weighted PDF is used, newly defi
parameters should be used.

(3) Once the proper parameters are used for the un-weig
PDF, it shows excellent agreement with the results of

density-weighted PDF.
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